A Minimally Invasive, Translational Biomarker of Ketamine-Induced Neuronal Death in Rats: microPET Imaging Using F-Annexin V
نویسندگان
چکیده
It has been reported that suppression of N-methyl-D-aspartate (NMDA) receptor function by ketamine may trigger apoptosis of neurons when given repeatedly during the brain growth spurt period. Because microPET scans can provide in vivo molecular imaging at sufficient resolution, it has been proposed as a minimally invasive method for detecting apoptosis using the tracer F-labeled annexin V. In this study, the effect of ketamine on the metabolism and integrity of the rat brain were evaluated by investigating the uptake and retention of F-fluorodeoxyglucose (FDG) and F-annexin V using microPET imaging. On postnatal day (PND) 7, rat pups in the experimental group were exposed to six injections of ketamine (20 mg/kg at 2-h intervals) and control rat pups received six injections of saline. On PND 35, 37 MBq (1 mCi) of F-FDG or F-annexin V was injected into the tail vein of treated and control rats, and static microPET images were obtained over 1 (FDG) and 2 h (annexin V) following the injection. No significant difference was found in F-FDG uptake in the regions of interest (ROIs) in the brains of ketamine-treated rats compared with saline-treated controls. The uptake of F-annexin V, however, was significantly increased in the ROI of ketamine-treated rats. Additionally, the duration of annexin V tracer washout was prolonged in the ketamine-treated animals. These results demonstrate that microPET imaging is capable of distinguishing differences in retention of F-annexin V in different brain regions and suggests that this approach may provide a minimally invasive biomarker of neuronal apoptosis in rats.
منابع مشابه
A minimally invasive, translational biomarker of ketamine-induced neuronal death in rats: microPET Imaging using 18F-annexin V.
It has been reported that suppression of N-methyl-D-aspartate (NMDA) receptor function by ketamine may trigger apoptosis of neurons when given repeatedly during the brain growth spurt period. Because microPET scans can provide in vivo molecular imaging at sufficient resolution, it has been proposed as a minimally invasive method for detecting apoptosis using the tracer (18)F-labeled annexin V. ...
متن کاملPreliminary biological evaluation of ¹⁸F-FBEM-Cys-Annexin V a novel apoptosis imaging agent.
A novel annexin V derivative (Cys-Annexin V) with a single cysteine residue at its C-terminal has been developed and successfully labeled site-specifically with 18F-FBEM. 18F-FBEM was synthesized by coupling 18F-fluorobenzoic acid (18F-FBA) with N-(2-aminoethyl)maleimide using optimized reaction conditions. The yield of 18F-FBEM-Cys-Annexin V was 71.5% ± 2.0% (n = 4, based on the starting 18F-F...
متن کاملCASPASE DEPENDENT APOPTOSIS INDUCED BY CLADRIBINE IN THE ESTROGEN RECEPTOR NEGATIVE BREAST CANCER CELL LINE, MDA-MB468
The purpose of the present study is to investigate the cytotoxicity/apoptotic effect of 2-chloro-2′-deoxyadenosine, cladribine, (2-CdA) in the human breast cancer cell line, MDA-MB468 (estrogen receptor negative, ER−). MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide] assay, annexin V-Fluorescein/PI and Hoechst 33258 staining were used to detect cytotoxicity and cell apopto...
متن کاملHyperglycemia and antibody titres against heat shock protein 27 in traumatic brain injury patients on parenteral nutrition
Objective(s):Hyperglycemia worsens the neuronal death induced by cerebral ischemia. Previous studies demonstrated that diabetic hyperglycemia suppressed the expression of heat shock protein 70 and 60 (HSP70 and 60) in the liver. IgG antibody titres against heat shock protein 27 (anti HSP27) were measured to determine whether hyperglycemia exacerbates ischemic brain damage by suppressing the exp...
متن کاملPositron Emission Tomography with [18F]FLT Revealed Sevoflurane-Induced Inhibition of Neural Progenitor Cell Expansion in vivo
Neural progenitor cell expansion is critical for normal brain development and an appropriate response to injury. During the brain growth spurt, exposures to general anesthetics, which either block the N-methyl-d-aspartate receptor or enhance the γ-aminobutyric acid receptor type A can disturb neuronal transduction. This effect can be detrimental to brain development. Until now, the effects of a...
متن کامل